Project 1

INTRODUCTION TO ARDUINO AND PROTEUS 8

Overview on Arduino Uno (Blinking A LED)

Overview on Arduino Uno

What is Arduino?

Arduino is an open source hardware prototyping platform designed around the popular (ATMEL) microcontroller family, and it includes a simple software development environment (Arduino IDE). Arduino bridges the computational world with the physical world, it can simply connect the sensors and actuators with a computer. Basically, you can write code to monitor and control various electronic components such as motors, thermostats, lights, switches, and many more. As Arduino is open source, there are a large number of compatible Arduino boards, just as there are many official Arduino models, with special functions as shown below. Arduino Uno is the most popular and used Arduino model.

Arduino Uno

Arduino Uno ("Uno" means one in Italian) is an ATMEL microcontroller board based on the ATmega328P (datasheet). It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header and a reset button.

Tech specs

MICROCONTROLLER	ATmega328P
OPERATING VOLTAGE	5V
INPUT VOLTAGE (RECOMMENDED)	7-12V
INPUT VOLTAGE (LIMIT)	6-20V
DIGITAL I/O PINS	14 (of which 6 provide PWM output)
PWM DIGITAL I/O PINS	6
ANALOG INPUT PINS	6
DC CURRENT PER I/O PIN	20 mA
DC CURRENT FOR 3.3V PIN	50 mA
FLASH MEMORY	32 KB (ATmega328P) of which 0.5 KB used
	by bootloader
SRAM	2 KB (ATmega328P)
EEPROM	1 KB (ATmega328P)
CLOCK SPEED	16 MHz
LED_BUILTIN	13
LENGTH	68.6 mm
WIDTH	53.4 mm
WEIGHT	25 g

Breadboard:

A Breadboard is a helpful tool to build circuits without any soldering. Certain contacts are connected with each other. Therefore, it is possible to connect many cables with each other without soldering or screwing them together. The image below shows in color, which contacts are connected.

Arduino IDE

Arduino IDE is a multi-platform (Mac, Windows and Linux) open-source software used to create, compile and send programs (Sketch) to the Arduino Board. The IDE can be downloaded from the following address: http://arduino.cc.

Arduino IDE Interface:

Button 1: verify (compile) Sketch for possible errors.

Button 2: Upload (send) Sketch to the Arduino Board.

Button 3: create a new Sketch.

Button 4: open an existing Sketch.

Button 5: Save Sketch.

Programing Structure of an Arduino Sketch

The structure of an Arduino sketch consists of 3 main sections as explained below:

Upload a sketch to Arduino Board

After writing and compiling the code, it can be uploaded to the Arduino board as follow:

First select the right Arduino board from the menu toolbar: **Tools > Board > Arduino AVR Boards > Arduino UNO,** then select the right serial port as: **Tools > Port > COMx.** After that the code can be uploaded using the upload button.

		233
Ard	ino	Mini

💿 sketch_jan02a | Arduino 1.8.16

File Edit Sketch Tools Help Auto Format Ctrl+T Archive Sketch sketch_jan02a Fix Encoding & Reload void setup() Manage Libraries... Ctrl+Shift+1 // put your Serial Monitor Ctrl+Shift+M Serial Plotter Ctrl+Shift+L } WiFi101 / WiFiNINA Firmware Updater void loop() { // put your Board: "Arduino Uno" 3 Port: "COM5 (Arduino Uno) Serial ports } COM5 (Arduino Uno) Get Board Info Programmer: "AVRISP mkll" > Burn Bootloader

What is Proteus?

Proteus Design Suite (designed by **Labcenter Electronics Ltd.**) is a software tool set, mainly used for creating schematics, simulating Electronics, Embedded Circuits, Microcontrollers, and designing PCB (**Print Circuit Board**) Layouts.

About Proteus

- 1) It is a software suite containing schematic, simulation as well as PCB designing.
- 2) ISIS is the software used to draw schematics and simulate the circuits in real time. The simulation allows human access during run time, thus providing real time simulation.
- **3) ARES** is used for **PCB** designing. It has the feature of viewing output in 3D view of the designed PCB along with components.

Proteus ISIS Interface

PROJECT 1: Blinking A LED

Objective: light up the LED for 1 second, then turn it off for another 1 second.

Required components: Arduino Uno, LED, 220ohm Resistor, bread board, 2 wires (jumper cables).

Simulation using Proteus

Install Arduino Library on Proteus

After downloading the Arduino Libraries extract the files, the copy the (*.LIB, *.IDX) files to the following folder C:\Program Files (x86)\Labcenter Electronics\Proteus 8
Professional\DATA\LIBRARY

Program Files (x86) > Labcenter Electro	nics > Proteus 8 Professional >	data > library	~	С
Name ^	Date modified 3/2/2021 11:20 AM	Type Object File Library	Size 339 KB	
ANALOGD.LIB	1/20/2021 2:47 PM	Object File Library	1,233 KB	
 🔝 APEX.LIB	11/29/2012 3:30 PM	Object File Library	23 KB	
ARDUINO2.IDX	8/3/2013 10:46 PM	IDX File	1 KB	
🔝 ARDUINO2.LIB	8/3/2013 10:40 PM	Object File Library	110 KB	
ARM7.LIB	11/29/2012 3:30 PM	Object File Library	99 KB	
ASIMMDLS.LIB	10/18/2018 3:24 PM	Object File Library	78 KB	
SSMANN.LIB	4/25/2019 1:38 PM	Object File Library	375 KB	
AVR.LIB	11/29/2012 3:30 PM	Object File Library	40 KB	

Building the Circuit

After installing Arduino libraries, open the Proteus software then click on to start a new project a window form will shows up, select the name of the project then click on **next > next > next > finish.**

Jame		
-cinc	Blinkled.pdsprj	
Path	C:\Users\allaeddine\Documents	Browse
O Ne	w Project O From Development Board O Blank Project	

Now, to insert the circuit components click on **P** the **pickdevice** in the **Object Selector** area.

80	DEVICES

The following window will appears, then on the **keywords** field search for Arduino, select **SIMULINO UNO** double click to add it to the **Object Selector**.

Pick Devices					?	×
Keywords:	Showing local results: 7				Preview	
arduino Match whole words? Show only parts with models? Category:	Device SIMULINO LILYPAD SIMULINO MEGA SIMULINO NANO SIMULINO UNO	Library ARDUINO2 ARDUINO2 ARDUINO2 ARDUINO2	Description SIMULINO LILYPAD ATMEGA328P V3.0 SIMULINO MEGA ATMEGA2560 V3.0 Blue SIMULINO NANO ATMEGA328P V3.0 Blue SIMULINO UNO ATMEGA328P V3.0 Blue	1	VSM DLL Model (AVR2.DLL)	
(All Categories) ARDUINO Connectors Speakers & Sounders	SIMULINO UNO SMD ULTRASONIC SENSOR ULTRASONIC V2.0 B	ARDUINO2 UltrasonicTEP ARDUINO2	SIMULINO UNO SMD ATMEGA328P V3.0 Blue Ultrasonic Sensor (HC SR-04) Ultrasonic Sensor Shield Blue		PCB Preview	
Sub-category: (All Sub-categories) Board Shield						
Manufacturer: (All Manufacturers) Others www.TheEngineeringProjects.com	SamacSys	Found more result	s, press to view ShapeDA Found mo	ore results, press to view	OK Canc	• :el

Using the same steps to add Resistor and LED Green components.

P C	DEVICES
LED-GREEN	
RES SIMULINO UNO	

Using the mouse left click select the component from **Object Selector** list and add to the **Editing Window**.

Click on the **Ground** from the **Object Selector**, left click on the **Ground** to add to **Editing window**. Use the mouse to create connections (wires) between the components.

P	TERMINALS
DEFAULT INPUT OUTPUT	
BIDIR POWER GROUND	
CHASSIS DYNAMIC BUS	

The circuit schematic should look like the image below

Double click on the resistor device and change its value to 220ohm.

😫 Edit Component			? ×
Part <u>R</u> eference: Resistance: <u>E</u> lement:	R1 220	Hidden: Hidden: Hidden:	OK Help
Model Type: PCB Package:	ANALOG RES40	✓ Hide All ✓ ✓ IAA Hide All ✓	Lancel
Other <u>P</u> roperties:			
Exclude from Simulati	on Attach hie yout Hide com Variant Edit all pro	rarchy module mon pins operties as text	
1 SET POWER AMAGO N 1 2 3 4 5 WWW archino cc biographic com LINO UNO	AREF 13 12 13 12 13 12 13 12 13 12 10 12 13 12 12 13 12 12 13 12 12 13 12 12 13 12 12 13 12 12 13 12 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 14 15 15 15 15 15 15 15 15 15 15		

Arduino Code

Open the Arduino IDE and write the following code:

```
int led13 = 13; //define a variable with the digital pin number
void setup() {
    // initialize digital pin led13 as an output.
    pinMode(LED_BUILTIN, OUTPUT);
}
void loop() {
    digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
    delay(1000); // wait for a second
    digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
    delay(1000); // wait for a second
}
```

Click on the compile button to verify the code. Save the code into *.INO file, then on the Arduino IDE navigate to **Sketch > Export compiled Binary** to extract the *.HEX that will be used for simulation on the Proteus environment.

traid	loop	11
VOIU	TOOD	1

^ Name	Date modified	Туре	Size
👳 Blink	1/3/2022 12:31 PM	Arduino file	1 KB
Blink.ino.standard.hex	1/3/2022 12:32 PM	HEX File	3 KB
Blink.ino.with_bootloader.standard.hex	1/3/2022 12:32 PM	HEX File	4 KB

Go back to the Proteus Simulator, double click on the Arduino board then select the **Program File** field and click on Select the extracted Arduino code *.Hex file. Then click on the **ok** Button.

Part <u>R</u> eference:	SIM1	Hidden	: 🗆	OK
Part <u>V</u> alue:	SIMULINO UNO	Hidden	: 🗆	Hidden Pins
Element:	New			Edit Firmware
blogembarcado.blogspot.com:	(Default)	Hide All	\sim	Cancel
Program File:	<u> </u>	Hide All	\sim	
RSTDISBL (Disable reset)	(1) Unprogrammed \sim	Hide All	\sim	
WDTON (Enable watchdog)	(1) Unprogrammed \sim	Hide All	\sim	
BOOTRST (Select Reset Vector)	(1) Unprogrammed \sim	Hide All	\sim	
CKSEL Fuses:	(0000) Ext. Clock \sim	Hide All	\sim	
Boot Loader Size:	(00) 1024 words. Starts at 0x1Cl \smallsetminus	Hide All	\sim	
SUT Fuses:	(10) ~	Hide All	\sim	

To run the simulation click on in the **animation panel**.

Implementation part

Blink the Arduino Built-In LED

Made with **Fritzing.org**

Connect the Arduino board through a USB cable to the computer. Then open the Arduino IDE, navigate to **File > Examples > Basics > Blink**. Then use upload Button to send the code to the Arduino Board.

Blinking LED using Arduino

Use the equipment's to implement the following circuit:

Connect the Arduino board to the computer then open up the Arduino IDE, compile the code used in the simulation then use the upload button to send it to Arduino.