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Chapter 4 : The Mathematical Structure of Quantum
Mechanics



The vectors

Classical Physics
o Quantum Mechanics

oAB 9.V, [v)

These objects are called “kets”, and
this type of notation is known as
Dirac notation.




L_inear Vector Spaces

A linear vector space V is a set of elements |a), |b) , |c) called vectors, or kets, for

which the following hold:

>V Is closed under addition. This means that if two vectors |a), |b) belong to V,

then so does their sum |a) + |b)
» A vector |a) can be multiplied by a scalar o to yield a new, well-defined vector
ala) that belongsto V
»\Vector addition is commutative: |a) + |b) = |b) + |a)

> Vector addition is associative: la) + (|b) + |¢)) = (la) 4+ |b)) + |c)



» There exists a unique element called 0 that satisfies \a) + 0 = |a) for every |a) In

V

» There exists an identity element in V such that I\a) = |a) for every vector in V
>Scalar multiplication is associative: ()| |a) = a (B |a))
» Scalar multiplication is linear:

a(|la) + b)) =ala) +al|b), (x4 p)la)=ala)+ Bla)

» For each |a) In V , there exists a unique additive inverse |—a) such that

la) + |—a) =0




What is the ""Ket« or the Vector

Zl
The "Ket" is a column matrix (nx1) |y} =| “?
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Dual Vector

In the language of kets, the dual vector is called a “bra”. Using Dirac notation, the

dual of a vector |1) 1s written as (Y|
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The scalar product
Dirac denoted the scalar (inner) product by the symbol ( | ), which he called a

“bra-ket”. For instance, the scalar product (¢, y)is denoted by the bra-ket ((l)|l/J)
(6, %) = (BIP) |

<2 Wy

yy=| 7|, 1) =

given two vectors of complex numbers |1{/) , |¢) such that:

7 1)
- \.n — — Ij_n —

the scalar product between these two vectors Is defined by:

9
.2

(Ply) = (wiws ... wy) | . | =wi@D+wi@)+- - +wyz) = ) wiz




Properties of kets, bras, and bra-kets

To every ket | w). there corresponds a unique bra (y | and vice versa:
ly) < (v

There 1s a one-to-one correspondence between bras and kets:

aly)+b|g) — a(y|+Db% o]

where a and b are complex numbers. The following 1s a common notation:

|ay) = a | ), (ay |= a*(y |



(w | ¢) 1s not the same thing as (¢ | w): (¢ | w)" = (w | @)
(v | aryr + a2y2) = ai{y | y1) +az(y | y2)
(a1@1 +axp2 | v) = ﬁﬁ¢l | ) + ”E{¢E | w)

a;bi(gr | y1) + aiba(gr | w2)

(11 + a2z | byt + Daya) = . ‘
+asb1(Py | w1) + a5b2(pa | w2)

Schwarz inequality: For any two states | y) and | ¢) of the Hilbert space. we can show that

y 1" < (wlw)g|4)
Triangle inequality: \/y +¢ |y +¢) < Vv 1) + V(¢ 19}

Orthogonal states: Two kets, | y) and | ¢). are said to be orthogonal if they have a vanishing scalar product:
(W 1¢) =0



Orthonormal states:

Two kets. | v) and | ¢). are said to be orthonormal if they are orthogonal and if each one
of them has a unit norm:

(w | @) =0, (v | y) =1, @ |¢) =1



Activity 01
Consider the following two kets:

—3i 2
Iw>=(2+i). I¢>=( —I )
4 2 =3

(a) Find the bra (¢ |.
(b) Evaluate the scalar product (¢ | v).
(c) Examine why the products | w) | ¢) and (¢ | (y | do not make sense.



Activity 02
Two vectors in a three-dimensional complex vector space are defined by:

2 | + 31
|4) =1 —T ]|;|B)= -4
l 8
Leta =6+ 351

(a) Computea |A),a|B),anda(|A) 4+ |B)).Showthata(|A) + |B)) = a |A)+
a|B).

(b) Find the inner products (A|B), (B|A).



Activity 03
Let two vectors be defined by

0 | i3
|A):(—7i).|B)=( 4 )
1 8

Find the norm of each vector.



Activity 04

Show that the vectors

1
|¢>=(“F).|¢>
V2

are orthogonal. Is [v/) normalized?



Basis Vectors

We call a set of vectors {|¢), |P2), ..., |¢,)} a basis if the set satisfies three
criteria:
1. Theset{|py), |p>). ..., |d,)} spansthe vector space V, meaning that every

vector [1/) in V can be written as a unique linear combination of the {|¢;)}.

Il//> = (] |¢l> + € |¢2> T ..o T Cp |¢n)

2. The set {|¢p1), |d2) ., ....|pn)} is linearly independent

3. The closure relation is satisfied.



Linearly Independent

A collection of vectors {|¢;) , [@2) . ..., |®d,)} are linearly independent if the
equation

ay|gr) +ax|a) + ... +ap|pa) =0

implies that ¢y = a» = --- = a, = 0. If this condition is not met we say

that the set is linearly dependent.



Activity 05

Show that the following vectors are linearly dependent:

I 0 —1
la) = (2)|b): (l)lc):( 0 )
l 0 —1



Activity 06

[s the following set of vectors linearly independent?

> 4
la) = (O) b)) = ( 0 )I() — (
0 —1



The Closure Relation

An orthonormal set {|¢1) . |¢2) . ..., |¢n)} constitutes a basis if and only if
the set satisfies the closure relation

> 1) (il =1
=1

V) =cilgi) +calga) + ...+ culpn)  with ¢ = (i |V)

=Xald) =) =Sla) (@) =)= Tld) )

1




Operators

»Physical Observables — quantities that can be measured like position and momentum —

are represented within the mathematical structure of guantum mechanics by operators.

>Mathematically, an operator A can be represented by a matrix, it is a mathematical

rule or instruction that transforms one vector |y) into a new, generally different
vector ['). Alpy=1y) or  (WPlA =]
»the eigenvalues of the matrix tell us that the possible outcomes of measuring a

guantity represent the operator,

»Wwhile the eigenvectors of the matrix give us a basis that we can use to represent the

states.



Products of operators
The product of two operators is generally not commutative: 4B £ B

h-L-}

The product of operators is, however, associative: 4BC = 4(BC) = (AB)C

: ~H1 ~H ~N—+M
We may alsowrite 4 4 = A4

When the product A B operates on a ket ) (the order of application is important),
the operator B acts first on |¢) and then A acts on the new ket B |y):

AB | y) = A(B | y))

Similarly, when . 4BCD operates on a ket | ), D acts first, then C, then B, and then A.



Linear operators

The operators that are most Interesting to us are linear operators.

An operator A is said to be linear if it obeys the distributive law and, like all

operators, It commutes with constants.

That is, an operator A is linear if, for any vectors [;) and [,) and any complex

numbers a, and a,, we have

A ly1) + a2 ly2) = a1d | y1) + a2 A | yo)




Simple Operators
We now consider some simple operators:

The Identity Operator: The simplest operator of all is the identity operator, which

does nothingtoa ket [/ |u) = |u)

Outer Product: The outer product between a ket and a bra is written as follows
V) (&l
This expression Is an operator.
(1) (@D Ix) = [¥){Plx)
(1) (@D [x) = a|¥)




Activity 07

The outer product |¢) (/| is an operator, and is therefore can be represented by a

matrix. Show this for:
2 — 1
. (3i)|¢>: ( . )
4 i

Given that (W |W) = 2, the action of this operator on a ket

12
([P WDEW)) =3V W) |P) =3(2)|P) = ( 181')
24

Show this with matrix multiplication.



The Representation of an Operator

The representation of an operator is formed by considering its action on a given set

of basis vectors.

In a basis that we label \ui), the components of an operator T are found by forming
the following inner product: 7;; = (u,-|f|u_,-)

When the given vector space is n dimensional, the components of the operator can
be arranged into an n X n matrix, where T;; Is the element at row 1 and column j :

Iy T, ... Tln\ (1,1,|f|11]) (111|7A"|113) (1.1||7A"|u,,)
Iy 1 ... 1y, (usT'luy) (u2|T|uz) ... (uz|T |uy)

)

I' — (1;j) =

Twi T Ton/  \alTlu))  (ualTlun) ... (| T lup)

e



Activity 08

Suppose that in some orthonormal basis {|u) , |u2) , |t3)} an operator 4 acts as
follows:

>
==
LL
= =
4
3

o >
&
I
55

Write the matrix representation of the operator.



The Trace of an Operator

The trace of an operator I is the sum of the diagonal elements of its matrix
and is denoted 7, (7). If

Pr By oo Ty (il Tluy)  Cun|Tluz)y .. (] T )
A I T ... 1, (ur|T|uy)  (uy|T|uz2) ... (u2|T|up)
I = (T,j) — : : . _' = . : e :

Twi Aap  +«o  dpg <UNI?|“I> (llrz|f|112> ‘o (”nﬁW“n)

then Tr(f) = Fi1 % 59 + « st Lip = Z:-?:l I;; . Alternatively, we can
write the trace as:

n

Tr(T) = (uy|Tus) + (| Tus) + ...+ (wal Tlun) =) i | T ;).

— =

i=1



Activity 09

By using a data from the previous example,

Find T,(A) from Y (u;|A|u;) and show that this is equal to the sum of the

diagonal elements of the matrix.



Eigenvalues and Eigenvectors of an Operator

»To each physical observable, such as energy or momentum, there exists an
operator, which can be represented by a matrix; the eigenvalues of the matrix are

the possible results of measurement for that operator.

»Finding the eigenvectors Is also important, for they give us a basis for the space

and therefore give us a way to represent any state.



A state vector |iy) Is said to be an eigenvector (also called an eigenket or
eigenstate) of an operator A if the application of A to |y) gives

AlY) = aly)
where a is a complex number, called an eigenvalue of 4 .
This equation is known as the eigenvalue equation, or eigenvalue problem, of the
operator A . Its solutions yield the eigenvalues and eigenvectors of 4 .
A simple example is the eigenvalue problem for the unity operator I :

') = )

This means that all vectors are eigenvectors of I with one eigenvalue, 1.



To find the eigenvalues and eigenvectors of a matrix A, we find the characteristic
polynomial and set it equal to zero.

The polynomial is found by considering the determinant of the following quantity:

where | Is the identity matrix. The characteristic polynomial Is found from
det(A — Al); solving the -equation above gives us the eigenvalues A.

We can then use them to find the eigenvectors for the matrix.



Activity 10

Find the characteristic polynomial and eigenvalues for each of the following

matrices:



Activity 11

In some orthonormal basis an operator I' = | D) (D] + 2| D) (DP>| 4+ [ D) (D, ].

Find the matrix, representing T and find its (normalized) eigenvectors and

eigenvalues. This vector space Is two-dimensional.



