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1) Wavefunction: Schrödinger's Equation 

Schrödinger's equation can be derived from the classical wave equation 

Where the solution of this equation is written 
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Differentiating the wave with respect to time, it comes: 
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Similarly, the gradient of this wave function gives: 
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According to classical physics, mechanical energy is given by:

Multiplying with the wave function

and finally using the previous results, we have: 

 
2

2
c p

p
E E E V r

m
   

       
2

, , ,
2

p
E r t r t V r r t

m
    

       

2

.

. , , ,
2

P

E

i
d

i r t r t V r r t
dt m

 
    

       
 
 
 



finally: 
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1.1) Differential operators in quantum physics 

Energy Cartesian components of  𝑷

Physical quantities E 𝑃𝑥 𝑃𝑦 𝑃𝑧

Differential operators 𝑖ℏ
𝜕

𝜕𝑡
−𝑖ℏ

𝜕

𝜕𝑥
−𝑖ℏ

𝜕

𝜕𝑦
−𝑖ℏ

𝜕

𝜕𝑧

To each physical quantity of classical mechanics, make correspond a differential 

operator 



2.2) The time-independent Schrödinger equation

by replacing in the Schrödinger equation and by dividing the two members by     

we then obtain:

The left member depends only on time, the right member only on coordinates: 

equality is only possible if the two members are equal to a constant C. 
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By integrating each member, we obtain: 
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And so the total wave function is: 
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where is the solution of the equation:  r

   r E r  

which is called the time-independent Schrödinger equation or the eigenvalue 

equation of H. 



2) Basic Developments

The behavior of a particle of mass m subject to a potential V (x) is described by   the following partial 

differential equation:

where ψ(x, t) is called the wavefunction. 

The wavefunction contains information about where the particle is located, 

Its square being a probability density. 

A wavefunction must be “well behaved,” in other words it should be defined and 

continuous everywhere. 

In addition it must be square-integrable, meaning: −∞
+∞

𝜓 𝑥, 𝑡 2 𝑑𝑟 < ∞
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Let two functions Ψ and Φ be defined for 0 ≤ 𝑥 < ∞. Explain why Ψ 𝑥 = 𝑥

cannot be a wavefunction but Φ 𝑥 = 𝑒−𝑥
2

could be a valid wavefunction.
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2.1)The Probability Interpretation of the Wavefunction

At time t, the probability of finding the particle within the interval x and x + dx is given

by the square of the wavefunction. Calling this probability 𝑑𝑃 𝑥, 𝑡 , we write:

𝑑𝑃 𝑥, 𝑡 = Ψ 𝑥, 𝑡 2 𝑑𝑥

The square is given by Ψ 𝑥, 𝑡 2 as opposed to Ψ 𝑥, 𝑡 because in general, the

wavefunction can be complex.

The probability P that a particle is located within 𝑎 ≤ 𝑥 ≤ 𝑏 is:

𝑃 = න

𝑎

𝑏

Ψ 𝑥, 𝑡 2 𝑑𝑥

It is common to denote a probability density Ψ 𝑥, 𝑡 2 as 𝜌 𝑥, 𝑡 .



The total probability for any distribution must sum to unity. If the probability distribution is

discrete with n individual probabilities 𝑝𝑖, this means that:



𝑖

𝑝𝑖 = 1

For a continuous probability distribution ρ(x), the fact that probabilities must sum to unity means

that:

න

−∞

+∞

𝜌 𝑥 𝑑𝑥 = 1

In quantum mechanics, this condition means that the particle is located somewhere in space with

certainty

න

−∞

+∞

Ψ 𝑥, 𝑡 2 𝑑𝑥 = 1



Suppose that a certain probability distribution is given by 𝑃 𝑥 =
9

4

1

𝑥3
for

1 ≤ 𝑥 ≤ 3. Find the probability that
5

2
≤ 𝑥 ≤ 3.
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Consider a particle traped in a well with potential given by:

𝑉 = ቊ
0 0 ≤ 𝑥 ≤ 𝑎
∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Show that 𝜓 = 𝐴 sin 𝑘𝑥 𝑒𝑥𝑝
−𝑖𝐸𝑡

ℏ solves the Schrödinger equation provided

That 

𝐸 =
ℏ2𝑘2

2𝑚
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2.2) Properties of the Schrödinger equation

The Schrödinger equation has two important properties. These are:

1. The equation is linear and homogeneous

2. The equation is first order with respect to time—meaning that the state of a 

system at some initial time to determines its behavior for all future times.

An important consequence of the first property is that the superposition principle 

holds. This means that if 𝜓1 𝑥, 𝑡 , 𝜓2 𝑥, 𝑡 , … , 𝜓𝑛 𝑥, 𝑡 are solutions of the 

Schrödinger equation, then the linear combination of these functions:

Ψ = 𝐶1𝜓1 𝑥, 𝑡 + 𝐶2𝜓2 𝑥, 𝑡 + ⋯𝐶𝑛𝜓𝑛 𝑥, 𝑡 = σ𝑖=1
𝑛 𝐶𝑖𝜓𝑖 𝑥, 𝑡

is also a solution.



2.3) Solving of the Schrödinger Equation

We have seen that when the potential is time-independent and the solution to the 

Schrödinger equation is given by:

The spatial part of the wavefunction, Φ 𝑥 , satisfies the time-independent 

Schrödinger equation.
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2.3.1) The Time-Independent Schrödinger Equation

Let Ψ 𝑥, 𝑡 = Φ 𝑥 𝑒𝑥𝑝
−𝑖𝐸𝑡

ℏ
be a solution to the Schrödinger equation with 

time-independent potential V = V (x). The spatial part of the wavefunction Φ 𝑥

satisfies:

−ℏ2

2𝑚

𝜕2Φ

𝜕𝑥2
+ 𝑉 𝑥 Φ 𝑥 = 𝐸 Φ 𝑥

where E is the energy of the particle. This equation is known as the time

independent Schrödinger equation.

Solutions that can be written as Ψ 𝑥, 𝑡 = Φ 𝑥 𝑒𝑥𝑝
−𝑖𝐸𝑡

ℏ
are called stationary.



A solution Ψ 𝑥, 𝑡 = Φ 𝑥 𝑒𝑥𝑝
−𝑖𝐸𝑡

ℏ
to the Schrödinger equation is called 

stationary because the probability density does not depend on time:

Ψ 𝑥, 𝑡 2 = Ψ∗ 𝑥, 𝑡 Ψ 𝑥, 𝑡

Ψ 𝑥, 𝑡 2 = Φ 𝑥 𝑒𝑥𝑝
−𝑖𝐸𝑡

ℏ

∗

Φ 𝑥 𝑒𝑥𝑝
−𝑖𝐸𝑡

ℏ

Ψ 𝑥, 𝑡 2 = Φ 𝑥 ∗𝑒𝑥𝑝
𝑖𝐸𝑡

ℏ
Φ 𝑥 𝑒𝑥𝑝

−𝑖𝐸𝑡

ℏ

Ψ 𝑥, 𝑡 2 = Φ 𝑥 ∗Φ 𝑥



Suppose Ψ 𝑥, 𝑡 = 𝐴 𝑥 − 𝑥3 𝑒𝑥𝑝
−𝑖𝐸𝑡

ℏ
. Find V (x) such that the Schrödinger 

equation is satisfied.
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2.3.2) Normalizing the Wavefunction

When a wavefunction that solves the Schrödinger equation is multiplied by an

undetermined constant 𝐴, we normalize the wavefunction by solving:

1

𝐴
= න

−∞

+∞

Ψ 𝑥, 𝑡 2 𝑑𝑥

The normalized wavefunction is then 𝐴 Ψ 𝑥, 𝑡 .



The wave function for a particle confined to 0 ≤ 𝑥 ≤ 𝑎 in the ground state was 

found to be:

Ψ 𝑥 = 𝐴 sin
𝜋𝑥

𝑎

where 𝐴 is the normalization constant. Find 𝐴 and determine the probability that

the particle is found in the interval   
𝑎

2
≤ 𝑥 ≤

3𝑎

4
.
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A particle of mass m is trapped in a one dimensional box with a potential described by:

𝑉 = ቊ
0 0 ≤ 𝑥 ≤ 𝑎
∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Solve the Schrödinger equation for this potential.
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Ψ 𝑥 = 𝐴𝑒−𝜆 𝑥−𝑥0
2

Find A such that Ψ 𝑥 is normalized. The constants λ and 𝑥0 are real.

Knowing that:

න

−∞

∞

𝑒−𝑧
2
𝑑𝑧 = 𝜋
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Let   Ψ 𝑥 = 𝐴𝑒
− 𝑥

2𝑎 𝑒𝑖 𝑥−𝑥0 . 

Find the constant 𝐴 by normalizing the wavefunction.
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2.3.2) Expansion of the Wavefunction and Finding Coefficients
Earlier we noted that the superposition principle holds

At time 𝑡 = 0, any wavefunction Ψ can be written as a linear combination of these

states:

If we set 𝐸 = ℏ𝜔, the time evolution of this state is then:

Since any function Ψ can be expanded in terms of the Φ𝑛, we say that the Φ𝑛 are

a set of basis functions.



2.3.2.1) Find the constants 𝑪𝒏 in the expansion of 

To find the constants 𝑪𝒏 in the expansion of Ψ , we use the inner product.

The inner product of two wave functions Ψ 𝑥 and Φ 𝑥 is defined by:

The square of Φ,Ψ tells us is the probability that a measurement will find

the system in state Φ 𝑥 , given that it is originally in the state Ψ 𝑥 .

Basis states are orthogonal. That is:



If a state Ψ 𝑥, 0 is written as a summation of basis functions Φ𝑛 𝑥 , we find the

n th coefficient of the expansion 𝑪𝒏 by computing the inner product of Φ𝑛 𝑥 with

Ψ 𝑥, 0 . That is:

Notice that:



2.3.2.2) The Meaning of the Expansion Coefficient

If a state is written as Ψ 𝑥, 𝑡 = σ𝐶𝑛Φ𝑛 𝑥 𝑒−𝑖𝜔𝑛𝑡, the modulus squared of the

expansion coefficient 𝐶𝑛 is the probability of finding the system in state Φ𝑛 𝑥 ,

i.e.:

Another way to put this is, if a state Ψ 𝑥, 𝑡 = σ𝐶𝑛Φ𝑛 𝑥 𝑒−𝑖𝜔𝑛𝑡 and we measure

the energy, what is the probability we find 𝐸𝑛 = ℏ 𝜔𝑛 ? The answer is 𝐶𝑛
2. Since

the coefficients 𝐶𝑛 define probabilities, it must be true that:



A particle of mass m is trapped in a one-dimensional box of width a. The

wavefunction is known to be:

If the energy is measured, what are the possible results and what is the probability

of obtaining each result? What is the most probable energy for this state?
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