
UNIVERSITY OF TISSEMSILT
FACULTY OF SCIENCE & TECHNOLOGY

DEPARTEMENT OF MATH AND COMPUTER SCIENCE

OBJECT-ORIENTED PROGRAMMING

Introduction to Java

23 février 2024

Lecturer

Dr. HAMDANI M

Speciality : Computer Science (ISIL)
Semester : S4

Object-Oriented Programming

Java

Control Structures
Array in Java

Plan

Object-Oriented Program-
ming

Java

Control Structures

Array in Java

University of Tissemsilt OOP - Introduction to Java 2 / 46

Object-Oriented Programming

Java

Control Structures

Array in Java

Object-Oriented Programming

Java

Control Structures
Array in Java

OOP vs Structured Program- ming

Introduction

Object-oriented programing (OOP) is a programming paradigm
that structures code around the concept of objects.

Object-oriented programs are often easier to understand, cor-
rect and modify.

University of Tissemsilt OOP - Introduction to Java 3 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

OOP vs Structured Program- ming

Structured Programming

Wirth’s equation :

Programs = Algorithms + Data Structures

The choice of algorithms and the use of suitable data structures
are the fundamental building blocks for writing software.

University of Tissemsilt OOP - Introduction to Java 4 / 46

Object-Oriented Programming

Java

Control Structures

Array in Java

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Write once, run anywhere

Develloped by Sun Microsystems in 1991 (James Gosling).

A key goal of Java is to be able to write programs that will
run on a great variety of computer systems and computer-
controlled devices.

University of Tissemsilt OOP - Introduction to Java 5 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Java Interpreter

University of Tissemsilt OOP - Introduction to Java 6 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

IDE

There are many popular Java IDEs, including :

Eclipse (www.eclipse.org)

NetBeans(www.netbeans.org)

IntelliJ IDEA (www.jetbrains.com)

University of Tissemsilt OOP - Introduction to Java 7 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

First Program in Java

1 public class Welcome
2 {
3 /* main method begins execution of Java application

*/
4 public static void main(String[] args)
5 {
6 System.out.println("Hello World !");
7 } // end method main
8 } // end class Welcome

System.out.printf :(f means "formatted") displays formatted data

University of Tissemsilt OOP - Introduction to Java 8 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Input values

1 import java.util.Scanner;
2 public class Demo {
3 public static void main(String[] args) {
4 Scanner scan = new Scanner(System.in);
5 System.out.print("Enter any number: ");
6

7 int num = scan.nextInt(); // reads the number
8 scan.close(); // Closing Scanner after the use
9 System.out.println("The number entered : " + num);

10 }
11 }

string : nextLine() float : nextFloat

University of Tissemsilt OOP - Introduction to Java 9 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Good Programming Practices

⋆ Declare each variable in its own declaration. This for-
mat allows a descriptive comment to be inserted next
to each variable being declared.

⋆ Choosing meaningful variable names helps a pro-
gram to be self-documenting.

University of Tissemsilt OOP - Introduction to Java 10 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Entering Text in a Dialog

import javax.swing.JOptionPane;

public class EnteringText_InDialog {

public static void main(String[] args) {

String name = JOptionPane.showInputDialog("Your
name:");

// display the message to welcome the user by name
JOptionPane.showMessageDialog(null, " "+ name);

}
}

University of Tissemsilt OOP - Introduction to Java 11 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Good Programming Practices

Format a Code

In order to format a selected region of code or an
entire file :

Click menu : Source > Format, or
Eclipse : CTRL + SHIFT + F
Netbeans : ALT + SHIFT + F

University of Tissemsilt OOP - Introduction to Java 12 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Data Types in Java

Category Data Types Example
Primitive Data
Types

byte, short, int, long, float,
double, char, boolean

int age = 30;

Reference
Data Types

String, Classes, Arrays, Inter-
faces, Enums, custom objects

String s =
"John";

Derived Data
Types

Arrays, Classes (created using
primitive/reference types)

int[] a={1, 2,
3};

User-Defined
Data Types

Custom classes and interfaces class MyClss
{...}

Data Types in Java

University of Tissemsilt OOP - Introduction to Java 13 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Data
Type

Size
(bits)

Range Example

byte 8 -128 to 127 byte b = 42;
short 16 -32,768 to 32,767 short s = 1000;

int 32 -231 to 231 - 1 int i = 123456;

long 64 -263 to 263 - 1 long l = 9876543210L;
float 32 IEEE 754 single-precision float f = 3.14f;
double 64 IEEE 754 double-precision double d = 2.71828;
char 16 0 to 65,535 (Unicode charac-

ters)
char c = ’X’;

boolean - true or false boolean b = true;

Java Primitive Data Types

University of Tissemsilt OOP - Introduction to Java 14 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

String

// Using a string literal
String str1 = "Hello, World!";

// Using the String constructor
String str2 = new String("Java");

University of Tissemsilt OOP - Introduction to Java 15 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Constants
A variable’s value can not be changed after it has been assi-
gned.

final double PI = 3.14159;
final int MAX_VALUE = 100;

Using the static final modifier combination :

public class Constants {
public static final double PI = 3.14159;
public static final int MAX_VALUE = 100;

}

static : means that this variable belongs to the class itself,
not to instances of the class.

University of Tissemsilt OOP - Introduction to Java 16 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Data Type Conversion

Implicit Type Conversion (Widening) : automatic type conver-
sion

Explicit Type Conversion (Narrowing) : Also known as cas-
ting. converting a data value from one data type to another

University of Tissemsilt OOP - Introduction to Java 17 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Implicit conversion

A value of one data type is automatically and safely converted
to another data type

1 Widening of Numeric Types
2 Promotion of Numeric Types
3 Boolean to Numeric Conversion
4 String to Numeric Conversion

University of Tissemsilt OOP - Introduction to Java 18 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Widening of Numeric Types

A smaller numeric data type is assigned to a larger numeric data
type.

int smallerValue = 42;
long largerValue = smallerValue;
// Implicit conversion from int to long

University of Tissemsilt OOP - Introduction to Java 19 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Promotion of Numeric Types

Different numeric data types are mixed in an expression, the
Java compiler promotes them to a common, larger data type
before performing the operation.

int num = 5;
double result = num + 3.5;
//Implicit conversion of int to double for addition

University of Tissemsilt OOP - Introduction to Java 20 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Boolean to Numeric Conversion

In some cases, boolean values can be implicitly converted to
numeric values (1 for true and 0 for false).

boolean flag = true;
int num = flag ? 1 : 0;
// Implicit conversion from boolean to int

University of Tissemsilt OOP - Introduction to Java 21 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Numeric to String Conversion

When you use the + operator to concatenate a String with a nu-
meric value, the numeric value is implicitly converted to a String
and then concatenated.

String str = "The answer is: ";
int answer = 42;
String result = str + answer;
// Implicit conversion of int to String

University of Tissemsilt OOP - Introduction to Java 22 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Explicit Type Conversion

Converting a value from one data type to another.

Specifying the target data type explicitly using casting ope-
rators. Explicit type conversion is used when you need to
convert a larger data type to a smalle

double doubleValue = 1000.75;
int intValue = (int) doubleValue;
// Explicit casting from double to int

Conversion should be used judiciously, and programmers should be
aware of the potential consequences and limitations when performing
such conversions (Data Loss, Range Limitation, ...)

University of Tissemsilt OOP - Introduction to Java 23 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java

Write once, run anywhere
IDE
First Program in Java
Input values

Entering Text in a Dialog
Data Types in Java
Implicit conversion
Explicit Type Conversion

Parsing

Parsing refers to the process of extracting meaningful informa-
tion or values from a textual representation, such as a string.

String strNumber = "42";
int number = Integer.parseInt(strNumber);

String strValue = "3.14159";
double value = Double.parseDouble(strValue);

String dateString = "2024-02-03";
SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy-MM-dd");
Date date = dateFormat.parse(dateString);

University of Tissemsilt OOP - Introduction to Java 24 / 46

Object-Oriented Programming

Java

Control Structures

Array in Java

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

if-else statement

The if-else statement is the most basic way to control program
flow. The else is optional, so you can use if in two forms :

if(Boolean-expression)
statement

or

if(Boolean-expression)
statement

else
statement

Executes one block of code if a specified condition is true and
another block of code if the condition is false

University of Tissemsilt OOP - Introduction to Java 25 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

Nested ifs

A nested if is an if statement that is the target of another if
or else

An else statement always refers to the nearest if statement
that is within the same block

if(i == 10) {
if(j < 20) a = b;

if(k > 100) c = d; // this if is
else a = c; // associated with this else

}
else a = d; // this else refers to if(i == 10)

University of Tissemsilt OOP - Introduction to Java 26 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

if-else-if Ladder

A series of if statements followed by an else block, allowing for
the evaluation of multiple conditions in sequence.

if(condition)
statement;
else if(condition)

statement;
else if(condition)

statement;
.
.
else

statement;

University of Tissemsilt OOP - Introduction to Java 27 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

Slection Statements Example

int num = 10;
int grade = 85;
if (num % 2 == 0) // if-else statement

System.out.println("Number is even");
else

System.out.println("Number is odd");

// else-if ladder
if (grade >= 90)
System.out.println("Excellent!");

else if (grade >= 80)
System.out.println("Very good!");

else if (grade >= 70)
System.out.println("Good!");

else
System.out.println("Needs

improvement!");

University of Tissemsilt OOP - Introduction to Java 28 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

switch statement
Multiway branch statement, execute one block of code from mul-
tiple options based on the value of an expression

switch (expression) {
case value1: // code, if expression == value1

break;
case value2: // code, if expression ==

value2
break;

// ... more cases
default: // code to be executed if no match

found
}

For versions of Java prior to JDK 7, expression must be of type
byte, short, int, char, or an enumeration. Beginning with JDK 7,
expression can also be of type String.

University of Tissemsilt OOP - Introduction to Java 29 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

int day = 3;
String dayName;
switch (day) {

case 1: dayName = "Sunday";
break;

case 2: dayName = "Monday";
break;

case 3: dayName = "Tuesday";
break;

case 4: dayName = "Wednesday";
break;

case 5: dayName = "Thursday";
break;

case 6: dayName = "Friday";
break;

case 7: dayName = "Saturday";
break;

default: dayName = "Invalid day";
}

University of Tissemsilt OOP - Introduction to Java 30 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

Iteration Statements

for loop : Executes a block of code a specified number of
times.

while loop : Executes a block of code as long as a specified
condition is true.

do-while loop : Executes a block of code at least once and
then repeatedly executes the block as long as a specified
condition is true.

University of Tissemsilt OOP - Introduction to Java 31 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

"for-each" loop

public class ForEachLoopExample {

public static void main(String[] args) {

int[] numbers = {1, 2, 3, 4, 5};

/* Using a for-each loop to print each element
of the array*/

for (int num : numbers) {
System.out.println(num);

}
}

}

University of Tissemsilt OOP - Introduction to Java 32 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

break statement

Terminates the loop or switch statement and transfers control
to the statement immediately following the loop or switch.

continue statement : Skips the current iteration of a loop
and proceeds to the next iteration.

return statement : Exits the current method and optionally
returns a value.

University of Tissemsilt OOP - Introduction to Java 33 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

"break - example
Example in a for loop :

for (int i = 0; i < 10; i++) {
if (i == 5)

break; // Terminates the loop when i is
System.out.println(i);

}

Example in a while loop :

int i = 0;
while (i < 10) {

if (i == 5)
break; // Terminates the loop when i is 5

System.out.println(i);
i++;

}

University of Tissemsilt OOP - Introduction to Java 34 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

continue statement

continue

Used within looping constructs (for, while, and do-while
loops) to skip the current iteration of the loop and proceed
to the next iteration.

Unlike the break statement, which exits the loop entirely,
continue merely skips the remaining code in the loop for the
current iteration and then continues with the next iteration
of the loop.

University of Tissemsilt OOP - Introduction to Java 35 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Selection Statements

Iteration Statements (Loops) Jump Statements

continue - example
Example in a for loop :

for (int i = 1; i <= 10; i++) {
if (i == 5)
continue; // Skip the rest of the loop body for i

== 5
System.out.println(i);

}

Example in a while Loop :

int i = 0;
while (i < 10) {

i++; // Increment i at the beginning to avoid
infinite loop

if (i == 5) continue; // Skip printing 5
System.out.println(i);

}
University of Tissemsilt OOP - Introduction to Java 36 / 46

Object-Oriented Programming

Java

Control Structures

Array in Java

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

Array in Java

In Java, an array is a container object that holds a fixed
number of values of a single type.

The length of an array is established when the array is crea-
ted and cannot be changed after creation.

Each item in an array is called an element, and each ele-
ment is accessed by its numerical index, with the first ele-
ment’s index being 0.

University of Tissemsilt OOP - Introduction to Java 37 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

Creating Arrays

Creating Arrays :

int[] myIntArray = new int[10]; // An array of 10
integers;

String[] myStringArray = new String[5]; // An array of
5 Strings

You can also initialize the array at the time of creation by enclo-
sing the initial values in curly braces .

int[] myIntArray = {1, 2, 3, 4, 5};
String[] myStringArray = {"Hello", "World"};

University of Tissemsilt OOP - Introduction to Java 38 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

Creating Arrays

Creating Arrays :

int[] myIntArray = new int[10]; // An array of 10
integers;

String[] myStringArray = new String[5]; // An array
of 5 Strings

You can also initialize the array at the time of creation by enclo-
sing the initial values in curly braces .

int[] myIntArray = {1, 2, 3, 4, 5};
String[] myStringArray = {"Hello", "World"};

University of Tissemsilt OOP - Introduction to Java 39 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

Accessing Array Elements

Accessing Array Elements : Array indexes start at 0. So, the
first element of an array is at index 0, the second is at index 1,
and so on.

int firstElement = myIntArray[0]; // Access the first
element

myIntArray[4] = 100; // Assign a value to the fifth
element

Array Length : The length property of an array is used to find
out the size of an array.

int arraySize = myIntArray.length;

University of Tissemsilt OOP - Introduction to Java 40 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

Looping Through Arrays

You can loop through an array using a for loop or an enhanced
for loop (also known as the "for-each" loop).

// Using a for loop
for (int i = 0; i < myIntArray.length; i++) {
System.out.println(myIntArray[i]);

}

// Using an enhanced for loop
for (int element : myIntArray) {
System.out.println(element);

}

University of Tissemsilt OOP - Introduction to Java 41 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

Multidimensional Arrays

Java supports multidimensional arrays, which are arrays of ar-
rays. The most common type is the two-dimensional array.

int[][] my2DArray = new int[10][20]; // A 2D array
of size 10x20

my2DArray[0][0] = 1; // Assign a value to the
first element

int[][] my2DArrayInitialized = {{1, 2}, {3, 4}};
// Initialization

University of Tissemsilt OOP - Introduction to Java 42 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

Array in Java

Arrays have a fixed size and cannot grow or shrink once
created.

They can hold only one type of data.

For more flexible operations like inserting, deleting, or re-
sizing, consider using Java Collections Framework classes
such as ArrayList.

University of Tissemsilt OOP - Introduction to Java 43 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

public class BubbleSort {
public static void bubbleSort(int[] arr) {

int n = arr.length;
boolean swapped;
for (int i = 0; i < n - 1; i++) {
swapped = false;
for (int j = 0; j < n - i - 1; j++) {

if (arr[j] > arr[j + 1]) {
// swap arr[j] and arr[j+1]
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = true;

}
}
if (!swapped) // IF no two elements
break; //were swapped, then break

}
}

University of Tissemsilt OOP - Introduction to Java 44 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

public static void main(String[] args) {

int[] numbers = {64, 34, 25, 12, 22, 11, 90};

bubbleSort(numbers);
System.out.println("Sorted array: ");

for (int number : numbers) {
System.out.print(number + " ");

}
}

}

University of Tissemsilt OOP - Introduction to Java 45 / 46

Object-Oriented Programming

Java

Control Structures
Array in Java Creating Arrays

Accessing Array Elements
Looping Through Arrays

Multidimensional Arrays
Limitations and Alternatives
ArrayList

Questions?

University of Tissemsilt OOP - Introduction to Java 46 / 46

University of Tissemsilt
Faculty of Science & Technology

Departement of Math and Computer Science

Object-Oriented Programming
Encapsulation

3 mars 2024

Lecturer

Dr. HAMDANI M

Speciality : Computer Science (ISIL)
Semester : S4

Plan

1 Understanding Classes

2 Encapsulation

3 Static variables and static
methods

4 Instances in Java

University of Tissemsilt OOP - Encapsulation 2 / 53

1 Understanding Classes
Class in Java
Constructors in Java

2 Encapsulation
About Encapsulation
Benefits of Encapsulation
Encapsulation in Java
Modifiers
Accessors And Mutators
Access to the instance (this)

3 Static variables and static methods
Static Variables
Static Methods
Why Is Method main Declared static ?

4 Instances in Java
About Instances
Creating and Accessing Instances

Definition

A class is a blueprint or template from which objects are created.

It defines the properties (attributes/fields) and behaviors (me-
thods/functions) that the objects created from the class will have.

It defines a group of objects with similar characteristics (proper-
ties) and behaviors (methods).

University of Tissemsilt OOP - Encapsulation 3 / 53

Benefits of Using Classes

Encapsulation : Classes encapsulate data and behavior, promo-
ting modularity and code organization.

Reusability : Classes can be reused in different parts of the pro-
gram, reducing code duplication.

Abstraction : Classes hide implementation details, allowing users
to interact with objects at a higher level of abstraction.

University of Tissemsilt OOP - Encapsulation 4 / 53

Components of a Class

Fields (Attributes) :Represent the properties or characteristics
of an object (e.g., color, name, age).

Methods (Behaviors) : Functions that define what an object
can do. These methods can access and modify the fields of the
class and perform other operations.

Constructors : A special method used to initialize an object when
it’s created..

University of Tissemsilt OOP - Encapsulation 5 / 53

1 public class Person {
2 private String name; // Fields representing
3 private int age; // Person data
4 // Constructor to initialize the student
5 public Person(String name, int age) {
6 this.name = name;
7 this.age = age;
8 }
9 // Methods to access Person information

10 public String getName() {
11 return name;
12 }
13 public int getAge() {
14 return age;
15 }
16 public void printInfo() {
17 System.out.println("Name: " + name);
18 System.out.println("Age: " + age);
19 }
20 }

University of Tissemsilt OOP - Encapsulation 6 / 53

Constructors

Have the same name as the class they belong to.
Are used to initialize the state of an object.
Do not specify a return type, not even void .
Can be overloaded (a class can have multiple constructors with
different parameters).
If no constructor is explicitly defined in a class, Java provides a
default constructor automatically.
The default constructor initializes the instance variables to their
default values (e.g., 0 for numeric types, null for object refe-
rences, false for boolean primitives)

University of Tissemsilt OOP - Encapsulation 7 / 53

Constructor - Example

public class Person {
private String name;
private int age;

// Default constructor is created here
public Person() {

/* name and age will be initialized to their
default values (null and 0, respectively) */

}

// Another constructor with parameters
public Person(String name, int age) {

this.name = name;
this.age = age;

}
}

University of Tissemsilt OOP - Encapsulation 8 / 53

Some important points to note about default constructors :

Not created if other constructors exist : If you define even
one constructor explicitly, the compiler will not create a default
constructor.

Can not be called explicitly : You can not call the default
constructor explicitly since it’s not defined in your code.

Subclass implications : if a subclass doesn’t have any construc-
tors explicitly defined, it will inherit the default constructor from
its superclass.
However, if the superclass doesn’t have a no-argument (default)
constructor and only has parameterized constructors, the subclass
cannot have a default constructor.

University of Tissemsilt OOP - Encapsulation 9 / 53

Destructor

Java does not have destructors.

There is a mechanism called "garbage collection" that handles
memory deallocation when objects are no longer needed

Java Virtual Machine (JVM) automatically handles memory ma-
nagement and garbage collection.

The finalize() method provides a mechanism for performing clea-
nup or finalization tasks before an object is garbage collected."

finalize() is not recommended, due to its non-deterministic na-
ture and limitations (utilize : try-with-resources, close(), close-
Connection(), AutoCloseable,...)

University of Tissemsilt OOP - Encapsulation 10 / 53

1 Understanding Classes
Class in Java
Constructors in Java

2 Encapsulation
About Encapsulation
Benefits of Encapsulation
Encapsulation in Java
Modifiers
Accessors And Mutators
Access to the instance (this)

3 Static variables and static methods
Static Variables
Static Methods
Why Is Method main Declared static ?

4 Instances in Java
About Instances
Creating and Accessing Instances

What is Encapsulation ?

Combines data and methods into a class.

University of Tissemsilt OOP - Encapsulation 11 / 53

Principles of Encapsulation

Data Hiding : Encapsulation hides the internal state of objects
from direct access by external code, preventing unauthorized ac-
cess and manipulation.

Access Control : Encapsulation allows you to control the visibility
and accessibility of class members using access modifiers (public,
private, protected, and default).

Information Hiding : Encapsulation hides the implementation de-
tails of a class from its users, exposing only the necessary inter-
faces (public methods) for interacting with the class.

University of Tissemsilt OOP - Encapsulation 12 / 53

Benefits of Encapsulation

Modularity : Encapsulation promotes modular design by encapsu-
lating related data and behaviors within a single class .
Data Integrity : Encapsulation helps maintain data integrity by
providing controlled access to the internal state of objects, pre-
venting invalid or inconsistent data states.
Code Reusability : Encapsulation enables you to encapsulate reu-
sable components (classes) that can be easily reused in different
parts of the codebase.
Security : Encapsulation enhances security by restricting access to
sensitive data and preventing unauthorized modification of object
state, protecting the integrity and confidentiality of the data.

University of Tissemsilt OOP - Encapsulation 13 / 53

Encapsulation in Java

In Java, encapsulation is achieved through the use of access mo-
difiers (public, private, protected, and default) to control the vi-
sibility and accessibility of class members.

Getter and setter methods are used to provide controlled access
to private attributes, allowing for safe and controlled manipulation
of object state.

University of Tissemsilt OOP - Encapsulation 14 / 53

Access Modifiers

Access modifiers control method and data visibility

public : Accessible from anywhere in the program
(like a master key)
private : Accessible only within the class itself
(like a key for a specific room)
protected : Accessible within the class and its
subclasses (like a key for a specific building)
default (no modifier) : Accessible only within the same package

University of Tissemsilt OOP - Encapsulation 15 / 53

Access Modifiers in Java

Java Access Modifiers and Their Accessibility

University of Tissemsilt OOP - Encapsulation 16 / 53

Best Practices

Use the most restrictive access level that makes sense for a parti-
cular member. Start with private and only increase accessibility
as needed.
Fields are typically made private to enforce encapsulation.
Constructors can be any access level, depending on whether you
want to restrict instantiation of your class.
Methods that are intended for use outside of the class should be
public, but internal utility methods should be private or default
to limit their scope.
Constant values (static final variables) are usually made public
since they don’t change and are meant to be accessible wherever
needed.

University of Tissemsilt OOP - Encapsulation 17 / 53

Remember

By carefully choosing the appropriate access modifier
for each class member, you can ensure that your Java
classes expose a well-defined interface to the rest of
your program, while keeping their internal implemen-
tation details hidden and protected.

University of Tissemsilt OOP - Encapsulation 18 / 53

Accessors (getters)

An Accessor method is commonly known as a get method or
simply a getter .
used to retrieve or access the value of an object’s state (its fields
or properties) from outside the class.
Provide controlled access to internal data while maintaining en-
capsulation.

University of Tissemsilt OOP - Encapsulation 19 / 53

Getters - Accessiblity

Getter access in Java :
Public (Most Common Use) : Widely accessible, but weakens
encapsulation.
Protected : Accessible within package and subclasses, good for
inheritance.
Package-private : Accessible within the same package, useful for
internal collaboration.
Private : Only accessible within the class, hides data but needs
additional access methods.

Always use private fields

University of Tissemsilt OOP - Encapsulation 20 / 53

Getter - Example
public class Person {

private String name;
private int age;
private boolean employed;

public String getName() {
return name;

}
public int getAge() {

return age;
}
public boolean isEmployed() {

return employed;
}

}

University of Tissemsilt OOP - Encapsulation 21 / 53

Mutator (setters)

Sets or updates the value (mutators) : setter is a method in java
used to update or set the value of the data members or variables.
The setter It takes a parameter and assigns it to the attribute..
Importance : ensure data encapsulation, validate inputs, and en-
hance code maintainability.

University of Tissemsilt OOP - Encapsulation 22 / 53

Setters - Accessiblity (1)

Choose the access modifier based on context, sensitivity, and future
needs.

Public : Most common ; used when you want to allow external
classes to modify the state of an object. Suitable for fields that
can be safely changed by any class.

Protected : Restricts the setting of a field to the defining class, its
subclasses, and classes within the same package. Useful when you
want to limit modifications to a more controlled group of classes,
typically within a hierarchy.

University of Tissemsilt OOP - Encapsulation 23 / 53

Setters - Accessiblity (2)

Default (Package-Private) : Allows only classes within the same
package to modify the field. Good for when you’re working with
a set of closely related classes that need to interact more freely
with each other but are not exposed to the outside.
Private : Very rare, as setters are meant to modify the state of
an object from outside. However, they can be used internally to
encapsulate the setting logic within the class itself, not intended
for use by any external or subclass.

University of Tissemsilt OOP - Encapsulation 24 / 53

Setter - Example
public class Person {

private String name;
private int age;

public void setName(String name)
{

this.name = name;
}
public void setAge(int age) {

if (age >= 0) {
this.age = age;

} else {
throw new IllegalArgumentException("Age cannot

be negative");
}

}
}

University of Tissemsilt OOP - Encapsulation 25 / 53

Naming Getters and Setters

Use the same prefix for all getters and setters : get, set, is, has
Use meaningful names : The name should clearly communicate the
purpose of the method. Avoid generic names like getValue, setValue
Follow the Java Naming Conventions : Use camelCase for method
names
Keep it concise : While clarity is important, avoid overly verbose
names
Consider the mutability of the property : For boolean properties, is
or has prefixes can be used for getters, while set is used for setters.
For complex properties : Consider using descriptive names :
getEmployeeInformation()

University of Tissemsilt OOP - Encapsulation 26 / 53

Examples : Naming Getters and Setters

Getter names :
getFirstName()
getLastName()
getSalary()
getEmployeeInformation()
isManager()
isEnabled()

Setter names :
setFirstName(String firstName)
setLastName(String lastName)
setSalary(double salary)
setManager(boolean manager)

University of Tissemsilt OOP - Encapsulation 27 / 53

Automatically Inserting Getters and Setters

in Netbens/Eclipse, you can automatically generate getters and setters
for your Java class fields :

Position your cursor within the class where you want to insert the
getters and setters.
Select Source > Generate Getters and Setters....
In the dialog that appears, Select the fields you want to generate
accessors for.
Click OK to generate the methods.

Or, select : Refactor > Encapsulate Fields...

University of Tissemsilt OOP - Encapsulation 28 / 53

What is "this" ?**

this is a reference variable that points to the current object ins-
tance.
It is implicitly available within all instance methods and construc-
tors.
You can use this to access instance variables, methods, and even
call other constructors within the same class.
can be used only inside a non-static method

University of Tissemsilt OOP - Encapsulation 29 / 53

Uses of "this"

Accessing instance variables : Use this to differentiate between
local variables and instance variables with the same name.
Calling other methods : Use this to call other methods on the
same object, promoting modularity and code reuse.
Calling constructors : Use this to call other constructors from
within a constructor, enabling initialization with different parame-
ters.
Passing as an argument : You can pass this as an argument to
other methods, allowing them to interact with the current object.

University of Tissemsilt OOP - Encapsulation 30 / 53

Example : Accessing Instance Variables

public class Person {
private String name;

public void setName(String name) {
this.name = name;
// this.name refers to the instance variable

}
}

this.name is used within the setName method to differentiate the local
variable name from the instance variable name

University of Tissemsilt OOP - Encapsulation 31 / 53

Example : Calling Other Methods

public class Person {
public void greet(Person other) {

System.out.println("Hello " + other.name + "!");
}
public void sayHelloTo(Person other) {

this.greet(other); // Call greet() on the current
object

}
}

the sayHelloTo method uses this.greet to call the greet method on the
current object instance (this). This allows the sayHelloTo method to
reuse the functionality of greet without code duplication.

University of Tissemsilt OOP - Encapsulation 32 / 53

Example : Calling Constructors
public class Person {

private String name;
public Person(String name) {

this.name = name;
}
public Person() {

this("Dennis Ritchie");/* this() calls the
constructor with the String argument */

}
}

the no-argument constructor (Person()) uses this("Dennis Ritchie") to
call the constructor that takes a name argument. This allows you to
create objects with different initial names using different constructors.

University of Tissemsilt OOP - Encapsulation 33 / 53

Example : Passing "this" as an Argument

public class Person {
private String name;

public void compare(Person other) {
if (this.age > other.age) {

System.out.println(this.name + " is older than " +
other.name);

} else {
System.out.println(other.name + " is older than " +

this.name);
}

}
}

In this example, the compare method takes another Person object as
an argument and uses this to access the current object’s age and name.

University of Tissemsilt OOP - Encapsulation 34 / 53

1 Understanding Classes
Class in Java
Constructors in Java

2 Encapsulation
About Encapsulation
Benefits of Encapsulation
Encapsulation in Java
Modifiers
Accessors And Mutators
Access to the instance (this)

3 Static variables and static methods
Static Variables
Static Methods
Why Is Method main Declared static ?

4 Instances in Java
About Instances
Creating and Accessing Instances

Static Variables

Class variables, also known as static variables, are variables decla-
red with the static keyword within a class.
Belong to the class rather than instances of the class.
Shared by all instances of the class, meaning only one copy exists
(global variables).
Accessed directly using the class name (e.g., ClassName.variableName).
Can also be accessed through an object instance followed by the
class name (e.g., objectInstance.className.variableName).
Initialized only once at the start of the program’s execution.

University of Tissemsilt OOP - Encapsulation 35 / 53

Accessing Class Variables

Use the class name directly (e.g., MyClass.count).
Access through an object instance (e.g., object.MyClass.count).
Remember, accessing class variables through an object instance
might not always reflect the latest value due to potential changes
made by other objects.

University of Tissemsilt OOP - Encapsulation 36 / 53

Examples of Class Variables
Counter for Objects :
static int objectCount = 0; // to count the number of objects

Constants :
static final double PI = 3.14159;

Configuration Settings :
static String defaultLanguage = "English";

Database Connection Information :
static String databaseURL =

"jdbc:mysql://localhost:3306/mydatabase";
static String username = "myuser";
static String password = "mypassword";

University of Tissemsilt OOP - Encapsulation 37 / 53

Example - Constants
public class Constants {

public static final double PI = 3.14159;
public static final int MAX_CONNECTIONS = 10;
public static final String DEFAULT_USERNAME = "admin";
public static final String DEFAULT_PASSWORD = "password123";

}

public class Application {
public static void main(String[] args) {

System.out.println("PI: " + Constants.PI);
System.out.println("Max Connections:" +

Constants.MAX_CONNECTIONS);
System.out.println("Default Username: " +

Constants.DEFAULT_USERNAME);
System.out.println("Default Password: " +

Constants.DEFAULT_PASSWORD);
}

}
University of Tissemsilt OOP - Encapsulation 38 / 53

Accessing Class Variables

Static methods are methods that belong to the class itself, not to
individual objects of the class
They are declared with the static keyword
They can be accessed using the class name, not an object refe-
rence

Math.sqrt(900.0);

University of Tissemsilt OOP - Encapsulation 39 / 53

Key Characteristics of Static Methods
Static methods cannot directly access instance variables or other
non-static methods.
They can access static variables and other static methods of the
same class.
They can be passed instance variables or other methods as argu-
ments.
Often used for operations that don’t require any data from an
instance of the class.

Static methods are like guests in a house. They can see and
use the things that are publicly available in the house (static
members), but they can’t go into individual rooms (instance
members) unless they are invited (passed as arguments)

University of Tissemsilt OOP - Encapsulation 40 / 53

Common Use Cases for Static Methods
Utility methods : Perform general-purpose tasks like calculations,
string manipulation, or I/O :
MathUtil.add(a, b); //Math operations
StringUtil.capitalizeFirstLetter(str) //String manipulation
FileUtil.readFile(fileName) //Input/Output operations
Validator.isEmailValid(email) //Validation

Constants : Define class-wide constants using : public static final
Factory methods : Create and return new instances of the class :
Integer intValue = Integer.valueOf("123");
System.out.println(intValue); // Output: 123

State-independent Methods : When a method’s behavior is not de-
pendent on the state of an object
public static double inchesToCentimeters(double inches)
{ return inches * 2.54; }

University of Tissemsilt OOP - Encapsulation 41 / 53

Example 01 : Static Method

public class TemperatureConverter {

// Static method to convert Fahrenheit to Celsius
public static double fahrenheitToCelsius(double fahrenheit) {

return (fahrenheit - 32) * 5 / 9;
}

public static void main(String[] args) {
/* Call the static method without creating an instance of the

class*/
double celsius =

TemperatureConverter.fahrenheitToCelsius(100);
System.out.println("100 degrees Fahrenheit is " + celsius

+ " degrees Celsius.");
}

}

University of Tissemsilt OOP - Encapsulation 42 / 53

Example 02 : Static Method

public class MathUtil {

public static double add(double x, double y) {
return x + y;

}

public static double square(double x) {
return x * x;

}
}

// Usage:
double result = MathUtil.add(5, 3);
double area = MathUtil.square(4);

University of Tissemsilt OOP - Encapsulation 43 / 53

Why Is Method main Declared static ? (1)

When you execute the Java Virtual Machine (JVM) with the java
command, the JVM attempts to invoke the main method of the
class you specify. Declaring main as static allows the JVM to
invoke main without creating an object of the class. When you
execute your application, you specify its class name as an argu-
ment to the java command, as in :

java ClassName argument1 argument2 . . .

The JVM loads the class specified by ClassName and uses that
class name to invoke method main.

University of Tissemsilt OOP - Encapsulation 44 / 53

Why Is Method main Declared static ? (2)

1 Program Entry Point : The main method serves as the entry point
for your Java program. This means it’s the first method that the Java
Virtual Machine (JVM) executes when you run the program. Since
the main method is the starting point, it’s executed directly without
needing an object instance of the class containing it.

2 No Object Required : If the main method wasn’t static, you would
need to create an object of the class to call the main method. However,
creating an object before the program can even start wouldn’t make
sense. By declaring it static, the main method becomes independent
of any object instances, allowing the JVM to execute it directly

University of Tissemsilt OOP - Encapsulation 45 / 53

Why Is Method main Declared static ? (3)

3 Class Loading and Memory Management : When you run a Java
program, the JVM first loads the class containing the main method
into memory. Since the main method is static, it’s allocated in the
class memory rather than in the memory of any object instance. This
simplifies memory management for the JVM.

4 Simplicity and Efficiency : Declaring main as static keeps the code
simple and efficient. You don’t need to worry about creating objects
or managing their lifecycle just to run the program.

5 Consistency with Other Languages : Many other programming lan-
guages that use object-oriented features also follow the convention of
having a static main method as the program’s entry point. This consis-
tency can help programmers familiar with other languages understand
how Java programs execute.

University of Tissemsilt OOP - Encapsulation 46 / 53

Static main execution

public class Greeting {

public static void main(String[] args) {

String firstName = args[0]; // First command-line argument
String lastName = args[1]; // Second command-line argument

System.out.println("Hello, " + firstName + " " + lastName
+ "!");

}
}

Execution : java Greeting James Gosling

Result : Hello, James Gosling !

University of Tissemsilt OOP - Encapsulation 47 / 53

1 Understanding Classes
Class in Java
Constructors in Java

2 Encapsulation
About Encapsulation
Benefits of Encapsulation
Encapsulation in Java
Modifiers
Accessors And Mutators
Access to the instance (this)

3 Static variables and static methods
Static Variables
Static Methods
Why Is Method main Declared static ?

4 Instances in Java
About Instances
Creating and Accessing Instances

What are Instances ?

Instances are objects created from a class.
They represent specific entities with their own state and behavior.
Think of a class as a blueprint, and an instance as a physical
object built from that blueprint
Each instance has its own set of attributes and methods, inde-
pendent of other instances of the same class.

University of Tissemsilt OOP - Encapsulation 48 / 53

Syntax for Creating Instances

Instances are created using the new keyword followed by a construc-
tor .
Constructors are special methods within a class responsible for
initializing newly created objects.

Person prs = new Person("Kebas", 20, "Algeria");

University of Tissemsilt OOP - Encapsulation 49 / 53

Accessing Instance Variables

Dot notation (.) is used to access instance variables / methods

prs.greet();
prs.introduce();

System.out.println(prs.name);
//depends on the type of access mofifier

University of Tissemsilt OOP - Encapsulation 50 / 53

Example of an instance (object)
class Person {

String name;
int age;
String nationality;

Person(String name, int age, String nationality) {
this.name = name;
this.age = age;
this.nationality = nationality;

}
void greet() {

System.out.println("Hello, my name is " + name + ".");
}
void introduce() {

System.out.println("I am " + age + " years old and from "
+ nationality + ".");

}
}

University of Tissemsilt OOP - Encapsulation 51 / 53

public class Main {
public static void main(String[] args) {

// Create a Person instance (instantiation)
Person prs = new Person("Kebas", 20, "Algeria");

// Call object methods
prs.greet();
prs.introduce();

}
}

University of Tissemsilt OOP - Encapsulation 52 / 53

Questions ?

University of Tissemsilt OOP - Encapsulation 53 / 53

University of Tissemsilt
Faculty of Science & Technology

Departement of Math and Computer Science

Object-Oriented Programming
Inheritance

10 avril 2024

Lecturer

Dr. HAMDANI M

Speciality : Computer Science (ISIL)
Semester : S4

Plan

1 Inheritance

2 final Keyword and Inheri-
tance

University of Tissemsilt OOP - Inheritance 2 / 31

1 Inheritance
About Inheritance
Superclass and Subclass
Syntax of Inheritance
Constructors and Inheritance
The super Keyword
Types of Inheritance
Exercice

2 final Keyword and Inheritance

Inheritance

A mechanism where a class acquires properties and behaviors from
another class

A new class of objects can be created conveniently by inheritance
the new class (called the subclass) starts with the characteristics
of an existing class (called the superclass), possibly customizing
them and adding unique characteristics of its own.

University of Tissemsilt OOP - Inheritance 3 / 31

Benefits of inheritance

Code Reusability
Improved Code Organization
Flexibility and Polymorphism
Reduced Development and Maintenance Costs
Promotes Extensibility

University of Tissemsilt OOP - Inheritance 4 / 31

Superclass

Superclass (parent class / base class) :
The original class from which a subclass inherits.
Defines common attributes and methods that can be used by
subclasses.
Serves as a foundation for building more specialized classes

University of Tissemsilt OOP - Inheritance 5 / 31

Subclass

Subclass (child class) :
A new class that inherits from a superclass
Inherits all public and protected members (attributes and me-
thods) from the superclass
Can add its own attributes and methods to specialize its behavior
Can override inherited methods to provide different implementa-
tions

Extends : The keyword used to declare that a subclass inherits from
a superclass

University of Tissemsilt OOP - Inheritance 6 / 31

Syntax of Inheritance

1 class Superclass {
2 // Superclass body
3 }
4

5 class Subclass extends Superclass {
6 // Subclass body
7 }

University of Tissemsilt OOP - Inheritance 7 / 31

Example - Superclass
1 public class Person {
2 private String firstName;
3 private String lastName;
4 private int age;
5

6 public Person(String firstName, String lastName, int
age) {

7 this.firstName = firstName;
8 this.lastName = lastName;
9 this.age = age;

10 }
11 public String getFirstName() {
12 return firstName;
13 }
14 // Methods ...
15 }

University of Tissemsilt OOP - Inheritance 8 / 31

Example - Subclass
1 public class Student extends Person {
2 protected int id;
3 private String speciality;
4

5 public Student(String firstName, String lastName, int
age, int id, String speciality) {

6 super(firstName, lastName, age);
7 this.id = id;
8 this.speciality = speciality;
9 }

10 public void setSpeciality(String speciality) {
11 this.speciality = speciality;
12 }
13 // Methods...
14 }

University of Tissemsilt OOP - Inheritance 9 / 31

Things to Consider

Visibility : Subclasses only inherit members declared as public, or
protected in the superclass (and default in the same package).
Private members are not accessible.
Overriding : Subclasses can override inherited methods to provide
different behavior. This is useful for customization.
Final Keyword : You can prevent a class from being inherited
using the final keyword.

University of Tissemsilt OOP - Inheritance 10 / 31

Constructors and Inheritance

Constructors are not inherited : Unlike fields and methods,
constructors are not directly inherited by subclasses in Java. This
is because constructors are specific to the object creation process
of a particular class and its needs.
Calling the superclass constructor : Subclasses can explicitly
call the constructor of their superclass using the "super" keyword..
Default constructor : If a subclass doesn’t have an explicitly de-
fined constructor, the Java compiler will implicitly call the super-
class’s no-argument (default) constructor, if it exists. Otherwise,
a compilation error will occur :
(If the superclass doesn’t have a no-argument (default) construc-
tor and only has parameterized constructors, the subclass cannot
have a default constructor)

University of Tissemsilt OOP - Inheritance 11 / 31

The super Keyword

Used with inheritance to interact with the superclass (parent class)
from a subclass
Access and interact with fields (variables) and methods defined
in the superclass, even if they are hidden or overridden in the
subclass
Used to explicitly call the constructor of the superclass

super is a keyword that provides a way to access members of
the superclass in the context of a subclass

University of Tissemsilt OOP - Inheritance 12 / 31

Example - super

1 class Person {
2

3 private String name;
4

5 public Person(String name) {
6 this.name = name;
7 }
8

9 public String getName() {
10 return name;
11 }
12 }

University of Tissemsilt OOP - Inheritance 13 / 31

1 class Student extends Person {
2 private int studentId;
3

4 public Student(String name, int studentId) {
5 super(name);
6 this.studentId = studentId;
7 }
8

9 public void introduce() {
10 System.out.println("Hello, my name is " + super.getName()

+ " and my student ID is " + studentId + ".");
11 }
12 }
13

14 public class Main {
15 public static void main(String[] args) {
16 Student student = new Student("Alice", 12345);
17 student.introduce();
18 }
19 }

University of Tissemsilt OOP - Inheritance 14 / 31

Types of Inheritance

Single inheritance – one superclass, one subclass
Multilevel inheritance – chained subclasses and superclasses
Hierarchical inheritance – multiple subclasses extend one su-
perclass
Multiple inheritance : not supported in Java
Hybrid Inheritance : a mix of two or more of the above types

of inheritance It can involve any combination of single, multilevel,
and hierarchical Inheritance

University of Tissemsilt OOP - Inheritance 15 / 31

Single inheritance

A class can have only one direct parent class :

1

2 class Parent {
3

4 // Parent class methods and fields
5 }
6

7 class Child extends Parent {
8

9 // Child class can access methods and fields of
Parent

10 }
11

University of Tissemsilt OOP - Inheritance 16 / 31

Multilevel Inheritance
A class is derived from a class which is also derived from another class :

1 class Grandparent {
2 // Grandparent class methods and fields
3 }
4 class Parent extends Grandparent {
5 // Inherits from Grandparent
6 }
7 class Child extends Parent {
8 // Inherits from Parent (and indirectly from Grandparent)
9 }

University of Tissemsilt OOP - Inheritance 17 / 31

1 public class Person {
2 String name; int age;
3 public Person(String name, int age)
4 { this.name = name; this.age = age; }
5 }
6 public class Employee extends Person {
7 String employeeID;
8 public Employee(String name, int age, String employeeID) {
9 super(name, age);

10 this.employeeID = employeeID;
11 }
12 }
13 public class Professor extends Employee {
14 String department;
15 public Professor(String name, int age, String employeeID,

String department) {
16 super(name, age, employeeID);
17 this.department = department;
18 }
19 }

University of Tissemsilt OOP - Inheritance 18 / 31

Hierarchical Inheritance
multiple classes inherit from a single parent class. This means a single
superclass can have multiple subclasses :

1 class Parent {
2 // Parent class methods and fields
3 }
4 class Child1 extends Parent {
5 // Inherits from Parent
6 }
7 class Child2 extends Parent {
8 // Also inherits from Parent
9 }

University of Tissemsilt OOP - Inheritance 19 / 31

1 public abstract class Shape {
2 public abstract double area();
3 public abstract double perimeter();
4 }
5

6 public class Circle extends Shape {
7 private double radius;
8

9 public Circle(double radius) {
10 this.radius = radius;
11 }
12

13 @Override
14 public double area() {
15 return Math.PI * radius * radius;
16 }
17

18 @Override
19 public double perimeter() {
20 return 2 * Math.PI * radius;
21 }
22 }University of Tissemsilt OOP - Inheritance 20 / 31

1 public class Rectangle extends Shape {
2 private double width;
3 private double height;
4

5 public Rectangle(double width, double height) {
6 this.width = width;
7 this.height = height;
8 }
9

10 @Override
11 public double area() {
12 return width * height;
13 }
14

15 @Override
16 public double perimeter() {
17 return 2 * (width + height);
18 }
19 }

University of Tissemsilt OOP - Inheritance 21 / 31

1 public class Main {
2 public static void main(String[] args) {
3 Shape circle = new Circle(5.0);
4 Shape rectangle = new Rectangle(4.0, 6.0);
5

6 System.out.println("Circle Area: " + circle.area());
7 System.out.println("Circle Perimeter: " +

circle.perimeter());
8

9 System.out.println("Rectangle Area: " + rectangle.area());
10 System.out.println("Rectangle Perimeter: " +

rectangle.perimeter());
11 }
12 }

University of Tissemsilt OOP - Inheritance 22 / 31

Multiple inheritance

A class inherits behaviours and attributes from more than one parent
class

University of Tissemsilt OOP - Inheritance 23 / 31

Multiple inheritance : Ambiguity

Complexity and Ambiguity : when the parent classes have me-
thods or attributes with the same names but different implementa-
tions. This ambiguity can make the code harder to read, maintain,
and debug.

University of Tissemsilt OOP - Inheritance 24 / 31

Multiple inheritance : Diamond Problem

This problem arises when a class inherits from two parent classes, which
themselves inherit from a common ancestor, forming a diamond shape
in the inheritance hierarchy.
The subclass inherits two copies of the methods and fields from the
common ancestor, leading to ambiguity about which implementation
to use

University of Tissemsilt OOP - Inheritance 25 / 31

Exercice 01
Create a set of Java classes representing individuals within an academic
institution, utilizing inheritance :

Person : This base class should hold basic information common to all
individuals (e.g., name, age, contact information).
Employee : This class should inherit from Person and include addi-
tional attributes and methods specific to employees (e.g., job title,
salary).
Student : This class should inherit from Person and include attributes
and methods related to students (e.g., student ID, Speciality).
Professor : This class should inherit from Employee and include at-
tributes and methods specific to professors (grade, specialization, de-
partement).

https://github.com/hamdani2023/javaPOO_ISIL_S04

University of Tissemsilt OOP - Inheritance 26 / 31

https://github.com/hamdani2023/javaPOO_ISIL_S04

1 Inheritance
About Inheritance
Superclass and Subclass
Syntax of Inheritance
Constructors and Inheritance
The super Keyword
Types of Inheritance
Exercice

2 final Keyword and Inheritance

Declaring a class as final (1)

This prevents other classes from inheriting from the final class.
This is useful when you want to ensure a class cannot be extended
and its behavior remains consistent.
For example, a MathUtils class containing static utility methods
might be declared final to prevent subclasses from overriding these
methods and potentially introducing unexpected behavior.

University of Tissemsilt OOP - Inheritance 27 / 31

Declaring a class as final (2)

When a class is declared with the final keyword, it cannot be subclassed.

1 public final class FinalClass {
2

3 // class body
4 }
5

6 // This would cause a compile-time error
7 class ExtendedClass extends FinalClass {
8

9 }

University of Tissemsilt OOP - Inheritance 28 / 31

Declaring a method as final (1)

This prevents subclasses from overriding the method.
This is useful when you want to ensure the specific implementation
of a method remains unchanged in subclasses.
For example, a calculateArea() method in a Shape class might be
declared final to ensure all shapes (e.g., Circle, Rectangle) use the
same logic for calculating area..

Declaring a field as final simply means its value cannot be
changed after initialization, but it does not prevent inheritance
–> Constant

University of Tissemsilt OOP - Inheritance 29 / 31

Declaring a method as final (2)
Declaring a method as final means it cannot be overridden by sub-
classes

1 public class SuperClass {
2 public final void showFinalMethod() {
3 System.out.println("This method is final and cannot be

overridden.");
4 }
5 }
6

7 public class SubClass extends SuperClass {
8 // This would cause a compile-time error
9 @Override

10 public void showFinalMethod() {
11 System.out.println("Attempting to override a final

method.");
12 }
13 }

University of Tissemsilt OOP - Inheritance 30 / 31

Questions ?

University of Tissemsilt OOP - Inheritance 31 / 31

University of Tissemsilt
Faculty of Science & Technology

Departement of Math and Computer Science

Object-Oriented Programming
Polymorphism, Abstract Classes and Interfaces

11 avril 2024

Lecturer

Dr. HAMDANI M

Speciality : Computer Science (ISIL)
Semester : S4

Plan

1 Polymorphism

2 Abstract classes

3 Introduction to Interfaces

University of Tissemsilt OOP - Inheritance 2 / 25

1 Polymorphism

2 Abstract classes

3 Introduction to Interfaces
Characteristics of Interfaces
Defining an Interface
Implementing an Interface

Introduction

Polymorphism is a fundamental concept in Java and other object-
oriented programming languages, allowing for actions to behave dif-
ferently based on the actual object that is performing the action

University of Tissemsilt OOP - Inheritance 3 / 25

What is Polymorphism ?

The term "polymorphism" originates from the Greek words "poly"
(many) and "morph" (form).
In Java, it refers to the ability of a single interface to control
access to a general class of actions.
You can specify a general set of stack routines that all share the
same names
The concept of polymorphism is often expressed by the phrase
“one interface, multiple methods

University of Tissemsilt OOP - Inheritance 4 / 25

Types of Polymorphism in Java
1. Compile-time Polymorphism (Static Polymorphism)

Achieved through method overloading.
Java does not support operator overloading.
Example :

void display(int a)
void display(int a, int b)

2. Runtime Polymorphism (Dynamic Polymorphism)
Achieved through method overriding.
Requires inheritance.
Example :

In a superclass Animal, a method makeSound() is defined.
The subclass Dog overrides makeSound() to provide a specific
implementation.

University of Tissemsilt OOP - Inheritance 5 / 25

Example : Compile-time Polymorphism

1 public class Calculator {
2

3 public int add(int a, int b) {
4 return a + b;
5 }
6

7 public double add(double a, double b) {
8 return a + b;
9 }

10 }

University of Tissemsilt OOP - Inheritance 6 / 25

Example : Runtime Polymorphism
1 class Animal {
2 void sound() {
3 System.out.println("Some sound");
4 }
5 }
6 class Lion extends Animal {
7 @Override
8 void sound() {
9 System.out.println("Roar");

10 }
11 }
12 class Snake extends Animal {
13 @Override
14 void sound() {
15 System.out.println("Hiss");
16 }
17 }
18

University of Tissemsilt OOP - Inheritance 7 / 25

1 public class TestPolymorphism {

2 public static void main(String[] args) {

3 Animal myAnimal = new Animal();

4 Animal myLion = new Lion();

5 Animal mySnake = new Snake();

6

7 myAnimal.sound(); // Outputs: Some sound

8 myLion.sound(); // Outputs: Roar

9 mySnake.sound(); // Outputs: Hiss

10 }

11 }

University of Tissemsilt OOP - Inheritance 8 / 25

1 Polymorphism

2 Abstract classes

3 Introduction to Interfaces
Characteristics of Interfaces
Defining an Interface
Implementing an Interface

What are Abstract Classes ?

Abstract classes are classes that cannot be instantiated on their
own.
They are used to provide a base for subclasses to build upon.
Abstract classes can include abstract methods, which are method
declarations without an implementation.

University of Tissemsilt OOP - Inheritance 9 / 25

Characteristics of Abstract Classes

Key Features
Instantiation : Cannot create instances directly.
Subclassing : Must be subclassed by concrete classes.
Abstract Methods : Can contain abstract methods that must
be implemented by subclasses.

Purpose
Provides a template for future specific classes.
Helps to avoid redundancy and enhance reusability.

University of Tissemsilt OOP - Inheritance 10 / 25

Rules for Abstract Classes

An abstract class may contain both abstract and non-abstract
methods.
Abstract methods do not specify a body and only provide a me-
thod signature.
If a class includes even one abstract method, the class must be
declared abstract.

University of Tissemsilt OOP - Inheritance 11 / 25

Using Abstract Classes

Abstract classes are crucial for situations where a general frame-
work needs to be established, and specific behaviors need to be
enforced.
Subclasses of an abstract class must implement all abstract me-
thods, but they can also override other methods.

University of Tissemsilt OOP - Inheritance 12 / 25

Example

1 // Abstract class defining common functionality for shapes

2 public abstract class Shape {

3

4 // Abstract method - subclasses must provide implementation

5 public abstract double calculateArea();

6

7 // Non-abstract method with default implementation (can be

overridden)

8 public void printDetails() {

9 System.out.println("This is a shape.");

10 }

11 }

University of Tissemsilt OOP - Inheritance 13 / 25

1 public class Circle extends Shape {
2 private double radius;
3

4 public Circle(double radius) {
5 this.radius = radius;
6 }
7 // Implementation for calculateArea() specific to circles
8 @Override
9 public double calculateArea() {

10 return Math.PI * radius * radius;
11 }
12 // Overriding printDetails() to provide specific information

for circles
13 @Override
14 public void printDetails() {
15 System.out.println("This is a circle with radius: " +

radius);
16 }
17 }

University of Tissemsilt OOP - Inheritance 14 / 25

1 public class Square extends Shape {
2 private double sideLength;
3

4 public Square(double sideLength) {
5 this.sideLength = sideLength;
6 }
7

8 // Implementation for calculateArea() specific to squares
9 @Override

10 public double calculateArea() {
11 return sideLength * sideLength;
12 }
13 }

University of Tissemsilt OOP - Inheritance 15 / 25

1 public class Rectangle extends Shape {
2 private double width;
3 private double height;
4

5 public Rectangle(double width, double height) {
6 this.width = width;
7 this.height = height;
8 }
9

10 @Override
11 public double calculateArea() {
12 return width * height;
13 }
14

15 @Override
16 public void printDetails() {
17 System.out.println("This is a rectangle with width: " +

width + " and height: " + height);
18 }
19 }

University of Tissemsilt OOP - Inheritance 16 / 25

1 public class Main {
2 public static void main(String[] args) {
3 /*You cannot directly create an object of the abstract class

Shape*/
4 Circle circle = new Circle(5);
5 Square square = new Square(4);
6 Rectangle rectangle = new Rectangle(6, 3);
7

8 System.out.println("Circle Area: " +
circle.calculateArea());

9 System.out.println("Square Area: " +
square.calculateArea());

10 System.out.println("Rectangle Area: " +
rectangle.calculateArea());

11

12 circle.printDetails();
13 square.printDetails();
14 rectangle.printDetails();
15 }
16 }

University of Tissemsilt OOP - Inheritance 17 / 25

1 Polymorphism

2 Abstract classes

3 Introduction to Interfaces
Characteristics of Interfaces
Defining an Interface
Implementing an Interface

What are Interfaces ?

Interfaces in Java are a blueprint of a class. They have static
constants and abstract methods.
Java interfaces specify what a class must do but not how it does
it.
They are implemented by classes which then define the methods’
behavior.

University of Tissemsilt OOP - Inheritance 18 / 25

Characteristics of Interfaces

Key Features
Abstract Methods : All methods in interfaces are implicitly abs-
tract and public.
Constants : All fields are public, static, and final (constant va-
lues).
Implementation : A class can implement multiple interfaces.

Why Use Interfaces ?
To achieve abstraction.
To support the functionality of multiple inheritance.
To separate the method definition from the method implementa-
tion.

University of Tissemsilt OOP - Inheritance 19 / 25

Defining an Interface

Syntax to define an interface is similar to class.
Example :

Simple Interface

1 public interface Vehicle {
2 void cleanVehicle();
3 int getNumberOfWheels();
4 }

This ’Vehicle’ interface can be implemented by any class that
pertains to a mode of transport that needs cleaning and uses
wheels.

University of Tissemsilt OOP - Inheritance 20 / 25

Implementing an Interface

A class implements an interface using the ’implements’ keyword.
It must provide a body for all abstract methods from the interface.

1 public class Car implements Vehicle {
2 public void cleanVehicle() {
3 System.out.println("Cleaning the vehicle");
4 }
5 public int getNumberOfWheels() {
6 return 4;
7 }
8 }

’Car’ class implements the ’Vehicle’ interface and provides imple-
mentation for the cleaning and wheel count methods.

University of Tissemsilt OOP - Inheritance 21 / 25

Example
1 public interface Drawable {
2 double PI = 3.14159; // implicitly public, static, and final
3

4 void draw(); // implicitly public and abstract
5 default void printMessage() {
6 System.out.println("This is a drawable object.");
7 }
8 }
9

10 public interface Resizable {
11 void resize(int newSize);
12 }
13

14 public abstract class Shape {
15 public abstract double getArea();
16 public abstract double getPerimeter();
17 }

University of Tissemsilt OOP - Inheritance 22 / 25

1 public class Circle extends Shape implements Drawable,
Resizable {

2 private double radius;
3 public Circle(double radius)
4 { this.radius = radius; }
5

6 @Override
7 public void draw()
8 { System.out.println("Draw a circle, radius:" + radius);}
9 @Override

10 public double getArea()
11 { return Math.PI * radius * radius; }
12 @Override
13 public double getPerimeter()
14 { return 2 * Math.PI * radius;}
15 public double getRadius()
16 { return radius; }
17 @Override
18 public void printMessage()
19 { System.out.println("This is a circle.");}
20 }

University of Tissemsilt OOP - Inheritance 23 / 25

1 Circle c = new Circle(5.0);
2

3 c.draw();
4

5 System.out.println("Area: " + c.getArea());
6

7 System.out.println("Perimeter: " + c.getPerimeter());
8

9 System.out.println("Radius: " + c.getRadius());
10

11 c.printMessage();

University of Tissemsilt OOP - Inheritance 24 / 25

Questions ?

University of Tissemsilt OOP - Inheritance 25 / 25

	OOP 02 -IntroductionToJava
	Object-Oriented Programming
	OOP vs Structured Programming

	Java
	Write once, run anywhere
	IDE
	First Program in Java
	Input values
	Entering Text in a Dialog
	Data Types in Java
	Implicit conversion
	Explicit Type Conversion

	Control Structures
	Selection Statements
	 Iteration Statements (Loops)
	 Jump Statements

	Array in Java
	Creating Arrays
	Accessing Array Elements
	Looping Through Arrays
	Multidimensional Arrays
	Limitations and Alternatives
	ArrayList

	OOP 03 Encap
	Understanding Classes
	Class in Java
	Constructors in Java

	Encapsulation
	About Encapsulation
	Benefits of Encapsulation
	Encapsulation in Java
	Modifiers
	Access Modifiers
	Access Modifiers in Java

	Accessors And Mutators
	getters
	setters
	Naming Getters and Setters
	Automatically Inserting Getters and Setters

	Access to the instance (this)
	About "this"
	Uses of "this"
	Examples of "this"

	Static variables and static methods
	Static Variables
	Static Methods
	About Static Methods
	Common Use Cases for Static Methods
	Examples - Static Method

	Why Is Method main Declared static?

	Instances in Java
	About Instances
	Creating and Accessing Instances

	OOP 04 Inheritance
	Inheritance
	About Inheritance
	Superclass and Subclass
	Syntax of Inheritance
	Constructors and Inheritance
	The super Keyword
	Types of Inheritance
	Single inheritance
	Multilevel Inheritance
	Hierarchical Inheritance
	Why Java doesn't support multiple inheritance

	Exercice

	final Keyword and Inheritance

	OOP 05 Plym-abst-interface
	Polymorphism
	Abstract classes
	Introduction to Interfaces
	Characteristics of Interfaces
	Defining an Interface
	Implementing an Interface

	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:

